4 research outputs found

    High-resolution linkage map and chromosome-scale genome assembly for cassava (Manihot esculenta Crantz) from 10 populations

    Get PDF
    Cassava (Manihot esculenta Crantz) is a major staple crop in Africa, Asia, and South America, and its starchy roots provide nourishment for 800 million people worldwide. Although native to South America, cassava was brought to Africa 400–500 years ago and is now widely cultivated across sub-Saharan Africa, but it is subject to biotic and abiotic stresses. To assist in the rapid identification of markers for pathogen resistance and crop traits, and to accelerate breeding programs, we generated a framework map for M. esculenta Crantz from reduced representation sequencing [genotyping-by-sequencing (GBS)]. The composite 2412-cM map integrates 10 biparental maps (comprising 3480 meioses) and organizes 22,403 genetic markers on 18 chromosomes, in agreement with the observed karyotype. We used the map to anchor 71.9% of the draft genome assembly and 90.7% of the predicted protein-coding genes. The chromosome-anchored genome sequence will be useful for breeding improvement by assisting in the rapid identification of markers linked to important traits, and in providing a framework for genomic selectionenhanced breeding of this important crop.Bill and Melinda Gates Foundation (BMGF) Grant OPPGD1493. University of Arizona. CGIAR Research Program on Roots, Tubers, and Bananas. Next Generation Cassava Breeding grant OPP1048542 from BMGF and the United Kingdom Department for International Development. BMGF grant OPPGD1016 to IITA. National Institutes of Health S10 Instrumentation Grants S10RR029668 and S10RR027303.http://www.g3journal.orghb201

    Genetic analysis and QTL mapping for multiple biotic stress resistance in cassava.

    No full text
    In Sub-Saharan Africa cassava (Manihot esculenta Crantz) is one of the most important food crops where more than 40% of the population relies on it as their staple carbohydrate source. Biotic constraints such as viral diseases, mainly Cassava Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD), and arthropod pests, particularly Cassava Green Mite (CGM), are major constraints to the realization of cassava's full production potential in Africa. To address these problems, we aimed to map the quantitative trait loci (QTL) associated with resistance to CBSD foliar and root necrosis symptoms, foliar CMD and CGM symptoms in a full-sib mapping population derived from the genotypes AR40-6 and Albert. A high-density linkage map was constructed with 2,125 SNP markers using a genotyping-by-sequencing approach. For phenotyping, clonal evaluation trials were conducted with 120 F1 individuals for two consecutive field seasons using an alpha-lattice design at Chambezi and Naliendele, Tanzania. Previously identified QTL for resistance to CBSD foliar symptoms were corroborated, and a new putative QTL for CBSD root necrosis identified (qCBSDRNc14AR) from AR40-6. Two QTL were identified within the region of the previously recognized CMD2 locus from this population in which both parents are thought to possess the CMD2 locus. Interestingly, a minor but consistent QTL, qCGM18AR, for CGM resistance at 3 months after planting stage was also detected and co-localized with a previously identified SSR marker, NS346, linked with CGM resistance. Markers underlying these QTL may be used to increase efficiencies in cassava breeding programs

    QTL mapping for pest and disease resistance in cassava and coincidence with some introgression regions derived from M. glaziovii

    Get PDF
    Open Access Journal; Published online: 21 July 2017Genetic mapping of quantitative trait loci (QTL) for resistance to cassava brown streak disease (CBSD), cassava mosaic disease (CMD), and cassava green mite (CGM) was performed using an F1 cross developed between the Tanzanian landrace, Kiroba, and a breeding line, AR37-80. The population was evaluated for two consecutive years in two sites in Tanzania. A genetic linkage map was derived from 106 F1 progeny and 1,974 SNP markers and spanned 18 chromosomes covering a distance of 1,698 cM. Fifteen significant QTL were identified; two are associated with CBSD root necrosis only, and were detected on chromosomes V and XII, while seven were associated with CBSD foliar symptoms only and were detected on chromosomes IV, VI, XVII, and XVIII. QTL on chromosomes 11 and 15 were associated with both CBSD foliar and root necrosis symptoms. Two QTL were found to be associated with CMD and were detected on chromosomes XII and XIV, while two were associated with CGM and were identified on chromosomes V and X. There are large Manihot glaziovii introgression regions in Kiroba on chromosomes I, XVII, and XVIII. The introgression segments on chromosomes XVII and XVIII overlap with QTL associated with CBSD foliar symptoms. The introgression region on chromosome I is of a different haplotype to the characteristic “Amani haplotype” found in the landrace Namikonga and others, and unlike some other genotypes, Kiroba does not have a large introgression block on chromosome IV. Kiroba is closely related to a sampled Tanzanian “tree cassava.” This supports the observation that some of the QTL associated with CBSD resistance in Kiroba are different to those observed in another variety, Namikonga

    Breedbase: a digital ecosystem for modern plant breeding

    Get PDF
    Modern breeding methods integrate next-generation sequencing (NGS) and phenomics to identify plants with the best characteristics and greatest genetic merit for use as parents in subsequent breeding cycles to ultimately create improved cultivars able to sustain high adoption rates by farmers. This data-driven approach hinges on strong foundations in data management, quality control, and analytics. Of crucial importance is a central database able to 1) track breeding materials, 2) store experimental evaluations, 3) record phenotypic measurements using consistent ontologies, 4) store genotypic information, and 5) implement algorithms for analysis, prediction and selection decisions. Because of the complexity of the breeding process, breeding databases also tend to be complex, difficult, and expensive to implement and maintain. Here, we present a breeding database system, Breedbase (https://breedbase.org/). Originally initiated as Cassavabase (https://cassavabase.org/) with the NextGen Cassava project (https://www.nextgencassava.org/), and later developed into a crop-agnostic system, it is presently used by dozens of different crops and projects. The system is web-based and is available as open source software. It is available on GitHub (https://github.com/solgenomics/) and packaged in a Docker image for deployment (https://dockerhub.com/breedbase/). The Breedbase system enables breeding programs to better manage and leverage their data for decision making within a fully integrated digital ecosystem
    corecore